

DETAILED DESIGN

REPORT

RONGO RONGO

F. Aybike Avşaroğlu

Esra Gariboğlu

Osman Kaya

Önder Kalacı

Table of Contents

1. Introduction

1.1. Problem Definition and Purpose of the Project

1.2. Scope

1.3. Definitions and Abbreviations

1.4. References

2. Overall Description

2.1. Product Perspective

2.2. Product Functions

2.3. User Characteristics

2.4. Constraints

2.5. Assumptions and Dependencies

2.6. Apportioning Requirements

3. Design Considerations

3.1. Design Assumptions, Dependencies and Constraints

3.2. Design Goals and Guidelines

4. Data Design

4.1. Data Description

4.1.1. Data Description of Sensor Nodes

4.1.2. Data Description of Gateway

4.1.3. Data Flow

4.1.4. Database Design

4.1.4.1. User Table

4.1.4.2. Greenhouse Table

 4.1.4.3. ClusterData Table

 4.1.4.4. Sensor

5. System Architecture

 5.1. Architectural Design

 5.2. Description of Components

 5.2.1. Component 1: Sensor Network

 5.2.1.1. Processing Narrative for Sensor Network

 5.2.1.2. Sensor Network Interface Description

 5.2.1.3. Sensor Network Processing Detail

 5.2.1.4. Dynamic behavior of Sensor Network

 5.2.2. Component 2: Gateway

 5.2.2.1. Processing Narrative for Gateway

 5.2.2.2. Gateway Interface Description

 5.2.2.3. Gateway Processing Detail

 5.2.2.4. Dynamic behavior of Gateway

 5.2.3. Component 3: Web Application

 5.2.3.1. Processing Narrative for Web Application

 5.2.3.2. Web Application Interface Description

 5.2.2.3. Web Application Processing Detail

 5.2.2.4. Dynamic behavior of Web Application

6. User Interface Design

 6.1. Overview

 6.2. Screen Images, Screen Objects and Actions

 6.2.1. Login page

 6.2.2. Selection Page

 6.2.3. Main Page

 6.2.4. Past Measurements

 6.2.5. Graphical View of an Interval

 6.2.6. States of the sensors

7. Detailed Design

 7.1. Sensor Network

 7.1.1. Star Topology

 7.1.2. LEACH Protocol

 7.2. Gateway

 7.3. Web Application

8. Libraries and Tools

 8.1. Libraries

 8.1.1. Libraries for the Programming Sensor Nodes and Gateway

 8.1.1.1. “mote.h”

 8.1.1.2. Existing C Libraries

 8.1.2. Libraries for Developing Web Application

 8.1.2.1. java.sql Package

 8.1.2.2. java.util Package

 8.1.2.3. Java Servlet API

 8.1.2.4. javax.swing

 8.1.2.5. PostgreSQL.jar

 8.2. Tools

 8.2.1. NesC (Network Embedded Systems C)

 8.2.2. NesC Compiler: ncc

 8.2.3. Java

 8.2.4. Javac

 8.2.5. Mote-View

 8.2.6. Moteworks

 8.2.7. TOSSIM

 8.2.8. Smart Draw

 8.2.9. Sequence Diagram Editor

 8.2.10. Microsoft Project Professional

9. Time Schedule

 9.1. Gannt Chart for Term 1

 9.2. Gannt Chart for Term 2

10. Conclusion

1. Introduction

1.1. Problem Definition and Purpose of the Project

 Temperature, humidity, light and the level of the carbon dioxide are the most

important factors for the productivity, growth, and quality of a plant. By continuous

monitoring of these environmental variables, the grower can analyze the optimal

environmental conditions to achieve maximum crop productiveness, then the optimal

greenhouse climate adjustment can enable us to improve productivity and to achieve

remarkable energy savings.

 In modern, big greenhouses, to make the automation system work properly,

several measurement points are required to trace down the local climate parameters in

its different parts. Using cabling for monitoring would make the measurement system

expensive, vulnerable, and also the measurement points are difficult to relocate. Due to

these facts, a Wireless Sensor Network (WSN), which consists of small-size wireless

sensor nodes with radio and sensors, is more cost efficient and practical option to build

the required greenhouse measurement system [3].

 The purpose of the project is to construct a greenhouse monitoring system using

wireless sensor networks. The major goal of the project is to increase the productivity

and quality of the plants in a greenhouse without observing it whole day. The system

periodically measures the temperature, light and humidity levels inside the greenhouse,

the greenhouse manager can observe the measurements from the web simultaneously.

Moreover, when a critical change in one of the measurements occurs, the greenhouse

manager will be notified via e-mail and cell phone text message. By this way, the

greenhouse manager can interfere in the situation as soon as possible and may be able

to prevent possible damaging effects of the changes.

1.2. Scope

 The first part of the project is protocol based on the star topology [4], the sensor

nodes do not communicate each other, and each sensor communicates with only the

gateway. The data packets are sent to the gateway by each node, and then the gateway

constructs them and sends data to the PostgreSQL database.

 In the second part, which uses the LEACH protocol [2], firstly the sensor nodes

choose cluster heads, which they send their measurements. CHs do not make

measurement, they collect data, construct them (CHs clarify or ignore mistaken or

corrupted data), and send packets to the gateway. After a while the CHs should change

dynamically, which is the main point of the energy saving, the sensor nodes chooses

some other nodes as CHs. The gateway also checks the packets, construct the data,

then send them to the PostgreSQL database.

 The web application is common in the two part of the project. User logs into the

web page, then see all the greenhouses belongs to his/her, chooses one of them. The

next page shows the latest measurements, user can choose past data, graphical view,

or the sensor nodes‟ states. User can display the measurements and averages of a

specific date, can see the graphics of an interval, and can see sensor nodes‟ health

status such as battery levels. About the measurements and ratio of the dead sensors,

there are different thresholds for different greenhouses, if the threshold is exceeded, the

user keeps informed about them via e-mail and/or SMS.

1.3. Definitions and Abbreviations

WSN: Wireless Sensor Network

GWSN: Greenhouse Wireless Sensor Network

CH: Cluster Head

LEACH: Low-Energy Adaptive Clustering Hierarchy

IEEE: Institute of Electrical and Electronics Engineering

TDMA: Time division multiple access

1.4. References

[1] IEEE Std 830-1998: IEEE Recommended Practice for Software

Requirements Specifications

[2] Heinzelman, WRH, Chandrakasan, AC, & Balakrishnan, HB. (2000).

Energy-efficient communication protocol for wireless microsensor

networks

[3] Ahonen, TA, Virrankoski, RV, & Elmusrati, ME. Greenhouse

monitoring with wireless sensor network.

[4] Greenhouse guide. (Referred 28 11 2010). [Online]. Available:

http://www.littlegreenhouse.com/guide.shtml

[5] M. Mancuso and F. Bustaffa, “A Wireless Sensors Network for

Monitoring Environmental Variables in a Tomato Greenhouse,”

presented at 6th IEEE International Workshop on Factory

Communication Systems in Torino, Italy, June 28-30, 2006

[6] USB Gateway Interface Data Sheet(Referred

29.11.2010)[Online].Available:

http://www.memsic.com/support/documentation/wireless-sensor-

networks/category/7-datasheets.html?download=144%3Amib520cb

[7] H. Liu, Z. Meng and S. Cui, “ A Wireless Sensor Network Prototype for

Environmental Monitoring in Greenhouses,” presented at Wireless

Communications, Networking and Mobile Computing 2007 (WiCom

2007), International Conference on 21-25 Sept. 2007 Page(s): 2344 –

2347.

[8] G. Montenegro and N. Kushalnagar, “Transmission of IPv6 Packets

over IEEE 802.15.4 Networks,” Internet-Draft, IETF, Septemper 2007.

[Online].

[9] PostgreSQL 9.1devel Documentation, The PostgreSQL Global

Development Group.[Online].Available:

http://developer.postgresql.org

2. Overall Description

2.1. Product Perspective

There are three major tasks to be accomplished in this project, namely

programming the sensor nodes, programming the gateway and informing the manager

of the greenhouse. All information is gathered from the sensor nodes and the manager

of the greenhouse is informed with the information at the gateway, via both a user

friendly web site and sending SMS.

Programming the Sensor Nodes:

Sensor nodes measure periodically the temperature, light and humidity levels

and send these measurements to the gateway. However, they should do these

measurements by wasting least possible energy. Thus, in this task power conservative

routing algorithms will be implemented for sensor networks [7].

Programming the Gateway:

 Three major operations should be accomplished in this task. Firstly, fix the errors

in the data coming from the sensor nodes. Then, consolidate the data. Lastly, save the

data to the PostgreSQL database on the computer which the gateway is connected.

Develop a web application:

 A user friendly interface to the greenhouse manager will be provided with this

application so that the manager will be able to see meaningful information about his/her

greenhouse simultaneously. The past information and the comparisons of them with the

current information can also be seen through this web application.

Figure 1 - Wireless Sensor Network

Figure 2 - Star Topology

Figure 3 - LEACH Protocol

2.2. Product Functions

● Accurately measuring the environment‟s temperature, light and humidity.

● Transmitting the measured data to the gateway.

● Evaluating the data and warning the user in an unexpected situation.

● Storing the collected data in the PostgreSQL database.

● Making it reachable through a user friendly website.

2.3. User Characteristics

 The users are greenhouse managers who are supposed to know the optimal and

critical temperature, light and humidity levels for specific crops. Apart from that, basic

computer knowledge will be enough.

2.4. Constraints

 A WSN consists of hundreds or maybe thousands of sensors which is an

important hardware constraint. We will only have 30 Processor/radio boards and 20

Sensor boards for this project so we will not be able to test our software with that much

of sensors but these are absolutely enough for proof of concept implementation.

2.6. Apportioning Requirements

 Further enhancements to the LEACH protocol or an entire new protocol can be

developed after final product is done. Except from defined website, some design and

functionality for the website can be delayed.

3. Design Considerations

 Sensor networks are large sets of small, inexpensive devices with hardware for

sensing and a radio for communication with the other sensors. Sensor networks are

being enabled by the convergence of several technologies at once. The advent of

cheap, low-power microprocessors and sensor technology has made it possible to

conceive of large networks which can together do what might be impossible or too

costly to do with fewer, more expensive nodes.

 Many fundamental questions about wireless sensor networks remain

unsatisfactory. Among the questions considered in this area are: Is scheduling a better

way to control access in sensor networks? With what power should nodes in the

network transmit the data? Will nodes determine the transmission path themselves, and

if so, how?

 Our wireless sensor network design uses a topology that aims to preserve

energy and provide an efficient algorithm to transmit data among sensors. Sensors will

in many cases face a short lifetime as a result of the limitations of battery technology,

and energy can be conserved by resolving the problem of elapsed time while

transmitting data. The result of applying this principle is that sensor architectures will be

optimized for two things: lasting a long time, and doing accurate measurements and

sending data through the shortest path concurrently.

 We should optimize both lifetime and performance by applying the most efficient

way among sensors. For an energy-constrained node this way might be to choose the

path consuming least total energy. We aim to do this by building the leach topology but

there are dependencies and constraints that we will discuss in this section.

3.1. Design Assumptions, Dependencies and Constraints

 In a sensor network, the nodes collaborate and interact with the environment; the

nodes know the data they carry. However, there are some dependencies and

constraints in a sensor network and we will discuss these in detail shortly.

 Our first key requirement is reliability. In sensor networks, reliability refers not

only to the eventual delivery of data but also to the ability to detect physical phenomena

in the first place. The design of a sensor network is thus an important consideration.

 A sensor network is not seen as a mere infrastructure for transporting data, but

the nodes are tasked with collaboratively monitoring and controlling the physical

environment. They have to process each other‟s data locally or while in transmission

toward some sink nodes and thus they have to know the data they forward. In the

problem of detection reliability, the main question is whether the events the network is

supposed to detect actually can be detected. A necessary prerequisite is that possible

event locations are covered by the sensing ranges of a number of sensors. The

required node density depends on the sensor‟s sensing ranges, the shape of the

sensing regions and environmental conditions.

 The user wants to have credible information he can count on. Therefore, to

achieve information accuracy, multiple readings should be combined to eliminate noise

and detect abnormal data. On the other hand, too many similar sensor readings are a

waste of energy. We should handle this issue by applying the leach topology. Our

protocol must also comply with energy constraints and memory constraints of sensor

nodes.

 LEACH partitions the nodes into clusters and in each cluster a dedicated node,

the cluster-head, is responsible for creating and maintaining a schedule; all the other

nodes of a cluster are non-cluster-heads. The CH aggregates the data of its members

and transmits it to the sink node. Since the sink is often far away, the CH must spend

significant energy for this transmission. For a non-CH it is typically much cheaper to

reach the CH than to transmit directly to the sink. In fact, with the exception of their time

slots, the non-CHs can spend their time in sleep state. The CH‟s role is energy

consuming since it is always switched on and is responsible for the long-range

transmissions. If a fixed node has this role, it would burn its energy quickly, and after it

died, all its members would be headless and thus useless. Therefore, this burden is

rotated among the nodes.

One last constraint is that memory limitation of sensors. Sensor networks can produce a

large volume of raw data. In wireless sensor networks, that mass of data is typically

aggregated in a large database, where it later processed, queried and searched. The

need for network processing necessitates that each sensor node act as a data

processing engine, an implementation of which is challenging on nodes that function

under tight CPU and memory constraints.

3.2. Design Goals and Guidelines

 When sensor nodes are organized in clusters, they could use either single hop or

multi-hop mode of communication to send their data to their respective cluster heads.

We present a systematic cost-based analysis of only the single hop modes, and provide

results that could serve as guidelines to obtain the optimal performance. We determine

closed form expressions for the required number of cluster-heads and the required

battery energy of nodes. Our problem formulation also allows for the application to be

taken into account in the overall design problem through a data aggregation model.

4. Data Design

4.1. Data Description

 This part of the document explains how the information domain of the system is

transformed into data structures. A data flow diagram is also included, however, a more

detailed data flow diagrams will be expanded in the detailed design report. Moreover,

the database that will be used in the web application component is thoroughly

explained.

4.1.1. Data Description of Sensor Nodes for Star Topology

 In this part, the aim is to illustrate how the data is kept until it reaches to the

gateway. In this component, the data is kept on the sensor nodes. Below, all the fields of

the sensor nodes are described.

sensorId: Each sensor node will have a unique sensor id.

realTime: It keeps the time. The data is used to determine when the measurement is

made.

isCH: Its value is true if the sensor node is CH and false if it is non-CH. This field is

used in both modes.

sleepTime: It keeps how long a sensor node sleeps to sense the environment again.

dataToGateway: It keeps the data to be transmitted from sensor nodes to gateway.

4.1.2. Data Description of Sensor Nodes for LEACH

 In this part, the aim is to illustrate how the data is kept until it reaches to the

gateway. In this component, the data is kept on the sensor nodes. The sensor nodes

could be in two different modes over time, thus some fields are used when the sensor

node is CH and some fields are used when the sensor node is non-CH. Below, all the

fields of the sensor nodes are described. It will be stated that which field is used when

the sensor node is acting as CH or non-CH, and the fields which are used in both

modes.

sensorId: Each sensor node will have a unique sensor id. This field is used in both

modes.

lastTimeElected: It keeps the last time a node is elected itself as a CH. It is one of the

data which is used for determination of each node to elect itself as CH in the next

election. The default value is -1. This field is used in both modes.

realTime: It keeps the time. The data is used to determine when the measurement is

made, and the next election time. Each sensor node, irrespective of its mode, must be

aware of the election time, thus, this field is used in both modes.

isCH: Its value is true if the sensor node is CH and false if it is non-CH. This field is

used in both modes.

electionPeriod: It keeps how long an election period is. It may be configured

depending on the application. This field is used in both modes.

totalNodeCount: It keeps how many sensor nodes are in the network. It is one of the

data which is used for each sensor node whether to elect itself as a CH in the next

election.

sleepTime: It keeps how long a non-CH sleeps to sense the environment again. This

field is used in non-CH mode.

dataToCH: It keeps the data packet to be transferred to CH‟s by each non-CH. The

packet is consisted of the sensed values of the sensor. This field is used in non-CH

mode.

CHId: It keeps which for each non-CH, which CH it sends the data in that period. The

field is set at every election for the non - CH‟s. This field is used in non-CH mode.

totalConnectedSensors: It keeps for each CH, how many non-CH has chosen that CH

as its CH. (i.e. how many non-CH will send its data in that period) . This field is used in

CH mode.

dataToGateway: It keeps the data to be transmitted from CHs to gateway. This field is

used in CH mode.

4.1.3. Data Description of Gateway

In this part, the aim is to illustrate how the data is kept until it is written to the

database.

greenHouseId: Each greenhouse will have a unique id. The id is important since the

data to be written from a greenhouse to the database must be identified properly.

networkData: It is the data coming from the CHs.

checkedData: It is the data that is further checked and to be written to the database.

4.1.4. Data Flow

 The figure below briefly explains the data flow between the components.

4.1.5. Database Design

 There is only one database in the system. This database contains 4 tables. The

first table, User, is used for storing user information. The table Greenhouse stores

averages of measurements in each greenhouse at each time interval. The Greenhouse

references User with Owner field. ClusterData table keeps the local measurement in a

cluster. Integrity constraints of ClusterData are that each ClusterId must be a SensorId

and GreenhouseId must be present in the Greenhouse. Sensor table keeps track of the

battery conditions of each sensor in all greenhouses.

 Figure: ER Diagram of the database tables

4.1.5.1. User Table

 This table keeps track of the users, the greenhouse owners. Each user has a

unique id and password. Moreover, all necessary communication information of the user

is kept.

Key Type Null Foreign

Key

References

UserId(PK) int no no no

UserName char[50] no no no

Password char[50] no no no

NotificationSettings int no no no

PhoneNumber char[20] yes no no

Email char[20] yes no no

Address char[100] yes no no

4.1.5.2. Greenhouse Table

 This table keeps track of the greenhouses. Some general information about the

greenhouses is kept.

Key Type Null Foreign

Key

Referenc

es

GreenhouseId(PK) int no no no

DateInfo(PK) timestamp no no no

Owner int no yes User

(UserId)

SensorCount int no no no

AvgHumidity real no no no

AvgTemperature real no no no

AvgLight real no no no

4.1.5.3. ClusterData Table

 This table keeps track of the data coming from the cluster heads. It helps to find

the light, temperature and humidity levels of regions in the greenhouse.

Key Type Null Foreign

Key

References

ClusterId(PK) int no yes Sensor(SensorId)

DateInfo(PK) timestamp no no no

GreenhouseId int no yes Greenhouse(GreenhouseId)

ClstrHumidity real yes no no

ClstrTemperature real yes no no

ClstrLight real yes no no

4.1.5.4. Sensor

This table keeps track of the sensor nodes. It keeps the battery level of each

individual sensor node.

Key Type Null Foreign Key References

SensorId(PK) int no no no

DateInfo(PK) timestamp no no no

GreenhouseId int no yes Greenhouse

(GreenhouseId)

BatteryLevel int no no no

5. System Architecture

5.1. Architectural Design

 This section of the document aims to develop a modular system structure and

explain the relationships between the modules to achieve the complete functionality of

the system.

5.2. Description of Components

5.2.1. Component 1.1: Sensor Network for Star Topology

The below diagram shows a single sensor node and the associated data. The

sensor nodes are used to sense the environmental measurements and packaging.

PacketToGateway is used to transmit data from sensor nodes to gateway.

5.2.1.1. Processing Narrative for Sensor Network

In this component, the routing protocols are handled. The functionality of this

component is to transfer the sensed data to the gateway. The sensor nodes pack the

sensed data and send the packet to the gateway.

5.2.1.2. Sensor Network Interface Description

 There is only one interface from sensor network. The interface is

“sendDataToGateway” which is between the sensor nodes and the gateway. It enables

the Sensor Network component to send the information gathered from the greenhouse

to the gateway via packetToGateway.

5.2.1.3. Sensor Network Processing Detail

● The sensors measure at regular intervals.

● Sends the data to the gateway.

● Sleep until the next time they send data to gateway.

● Loops forever.

5.2.1.4. Dynamic behavior of Sensor Network

5.2.2. Component 1.2: Sensor Network for Leach

 The below diagram shows a single sensor node and the associated data. The

sensor nodes could be in two different modes over time, thus some fields are used

when the sensor node is CH and some fields are used when the sensor node is non-

CH. PacketToCH is used to transmit data from non-CHs to CHs. PacketToGateway is

used to transmit data from CHs to gateway.

5.2.2.1. Processing Narrative for Sensor Network

 In this component, the routing protocols are handled. The functionality of this

component is to transfer the sensed data to the gateway. The sensor nodes could be in

two different modes over time, CH and non-CH. Non-CH‟s send the sensed data to CHs

and CHs transmits the data to gateway.

5.2.2.2. Sensor Network Interface Description

 There is only one interface from sensor network. The interface is

“sendDataToGateway”, as its name implies, it is between the CHs and the gateway. It

enables the Sensor Network component to send the information gathered from the

greenhouse to the gateway via packetToGateway.

5.2.2.3. Sensor Network Processing Detail

● Some of the sensor nodes elect themselves as CH for this round.

● Each node that elects itself a cluster-head for the current round broadcasts an

advertisement message to the rest of the nodes.

● Each non-CH decides the cluster to which it will belong for this round and informs the

CHs that it is a member of that cluster.

● Based on the number of nodes in the cluster, the CHs create a schedule telling each

sensor node when it can transmit.

● CHs send data to gateway.

● After a certain amount of time, which is determined a priori, the next round begins with

each node determining if it should be a CH for this round and advertising this

information.

● Loops forever.

5.2.2.4. Dynamic behavior of Sensor Network

5.2.2. Component 2: Gateway

5.2.2.1. Processing Narrative for Gateway

 Gateway gets data coming from any sensor nodes, and checks the data. If there is not

any problem about the measurements, and packets, data is saved to the PostgreSQL

database. Otherwise, if the data is unrealistic, packet is corrupted or a sensor does not send

any packets, gateway handles the problems in different ways.

5.2.2.2. Gateway Interface Description

 There is only one interface from gateway. The interface is

“writeCheckedDataToDatabase”, as its name implies, it is between the CHs and the

gateway. It enables the gateway component to write the checked information of the

whole greenhouse to the PostgreSQL via checkedData which is type of

packetToGateway[].

5.2.2.3. Gateway Processing Detail

● Gateway gets the data at any time.

● If there is not any problematic data, saves the data to the PostgreSQL.

● If there is a problematic data, the gateway handles it. There could be 1 possible

problematic data type. The data packet, that has been received, may be corrupted (i.e.

missing bytes in the packet). The gateway discards that packet.

● Loops forever.

5.2.2.4. Dynamic behavior of Gateway

5.2.3. Component 3: Web Application

5.2.3.1. Processing Narrative for Web Application

Greenhouse managers can choose one of their greenhouses, and see the instant

measurements. Furthermore, the managers can see the past measurements, averages

and comparisons. If there is an abrupt change in the measurements (temperature,

humidity, light), manager would be informed via e-mail and/or SMS. User can view the

battery levels, signal qualities, percentage of erroneous packets of the sensor nodes.

Moreover, when the dead sensor nodes ratio exceeds a threshold, the manager is

informed via an e-mail and/or an SMS. The aim is to provide real-time greenhouse

environment observation to the managers.

5.2.3.2 Web Application Interface Description

There is one interface in the web application. The interface is in fact the user

interface, and it is widely covered in the section 6 of this document.

5.2.2.3. Web Application Processing Detail

● User shall log in to the main page with User ID and Password, to see his/her

greenhouse list.

● User shall click one of the greenhouses, then the new page loads, on which, instant

temperature, humidity and lightening measurements are shown.

● User shall enter a date, and see the average measurements for the date, can make

some comparisons.

● User shall check the health statuses of the sensor nodes, such as their battery levels,

signal qualities.

● User is informed via an e-mail and/or an SMS when the ratio of dead sensor nodes

exceeds a threshold.

5.2.2.4. Dynamic behavior of Web Application

6. User Interface Design

 6.1. Overview

Greenhouse managers can perceive their greenhouses‟ conditions regarding to

both immediate data and past data. After logging in, they choose one of their

greenhouses, and see the instant measurements. In this page the manager can choose

to see detailed measurements, past measurements, graphical representation of

conditions, and states of the sensors (their battery levels and signal qualities). If there is

an abrupt change in the measurements (temperature, humidity, light), and when the

dead sensor nodes ratio exceeds a threshold, manager would be informed via e-mail

and/or SMS. The aim is to provide real-time greenhouse environment observation to the

managers.

 6.2. Screen Images, Screen Objects and Actions

 6.2.1. Login page

Firstly, the user accesses the “Login Page” as shown above. After entering a valid and

matching „User Name‟ and „Password‟, the user clicks the „Login‟ button, then directed to the

next page, which is “Selection Page” to select one of his/her greenhouses.

6.2.2. Selection Page

In this page, the user chooses one of the greenhouses from the combo box, then clicks

„Enter‟ button and directed to the “Main Page” which is shown in the next section.

6.2.3. Main Page

In the “Main Page” user can see the immediate data, which is average of the

measurements coming from all sensors at that time. Moreover, at the top of the page,

the user can see the average of the whole day up until that time. In this page the user

can choose to see past measurements, graphical view of an interval or states of the

sensor nodes.

6.2.4. Past Measurements

After selecting “Past Measurements” in the main page, in this section, the user enters

an past date, clicks „Go‟ button, then see the average measurements of the day and the

measurements in hourly intervals, and then the user can go back to the “Main page”.

6.2.5. Graphical View of an Interval

After selecting “Graphical View” in the main page, the user accesses this page and

enters two dates, clicks „Graphical View‟ button, then can see the graphics of the

measurements of that interval, and then the user can go back to the “Main page”.

6.2.6. States of the sensors

After selecting “States of the sensors” in the main page, the user enters sees the battery

life of each sensor node, and then the user can go back to the “Main page”.

7. Detailed Design

 In this section, details of each design component. These details include attribute descriptions

for identification, processing and data. In our project, we have three major components, namely,

Sensor Network, Gateway and Web Application.

7.1. Sensor Network

 In this project, we are going to implement two different network protocols. We will start with

the Star topology based protocol and then we will go on with the LEACH protocol.

7.1.1. Star Topology

Classification: This component can be classified as a subsystem.

Definition: Star topology is one of the most common computer network topologies. In its

simplest form, a star network consists of one central gateway, which acts as a conduit to

transmit messages. Thus, the gateway and leaf nodes, and the transmission lines

between them, form a graph with the topology of a star. If the central node is passive, the

originating node must be able to tolerate the reception of an echo of its own transmission,

delayed by the two-way transmission time plus any delay generated in the central node.

An active star network has an active central node that usually has the means to prevent

echo-related problems.

The star topology reduces the chance of network failure by connecting all of the

systems to a central node. All peripheral nodes may thus communicate with all others by

transmitting to, and receiving from, the central node only. The failure of a transmission line

linking any peripheral node to the gateway will result in the isolation of that peripheral

node from all others, but the rest of the systems will be unaffected.

Responsibilities: The main responsibility of this component is to send the data sensed

by the sensor nodes to the gateway.

Constraints: The most important constraint of this component is the energy consumption.

Since energy consumption will inevitably require maintenance, this component must be

power conservative. Another important constraint of this component is the high

dependence of the system on the functioning of the gateway. If the gateway or the

computer connected to gateway is broken, the whole system goes down. The

performance and scalability of the network depends on the capabilities of the gateway.

Network size is limited by the number of connections that can be made to the gateway.

Moreover, since all the sensor nodes will send their data directly to the gateway, we

cannot distribute the sensor nodes in a wide area.

Composition: The network in a star topology can be thought as composition of distinct

sensor nodes. Each node does the same job. The details of the processing of the sensor

nodes are explained in the processing part.

Uses/Interactions: The network component is a separate subsystem which is consistent

on its own space. It measures the data, does some processing and sends this processed

data to gateway. Therefore, it only interacts with the gateway subsystem. Since the

component pre-processes the measured data the side effects are removed, resulting the

other components work on stable states.

Resources: Each sensor node is consisted of three parts, radio board, sensor board and

battery. Each sensor node uses its own processor and memory. Since the sensor nodes

are some kind of embedded devices, they have very limited resources. Thus, the code

working on them should be as simple as possible. Radio boards can transmit signals in a

300m radius area(when there is no obstacles such as a wall or tree). Batteries used are

6V lithium-carbon batteries, which we try to maximize the lifetime of it. There are no race

conditions and/or deadlock situations since each sensor node has a single thread working on

them.

Processing: The sensors measure at regular intervals and send the sensed data to the gateway.

Then, each sensor node sleeps until the time it must sense, the time is determined beforehand

and can be configured as intended. For this project, we select that time to be 5 minutes by default

for the star topology based protocol. There is no concurrency for sensor nodes since they are

programmed as a single thread within and infinite loop. The pseudo code is given:

 step1: Sense the environment

 step2: Send the sensed data to the gateway

 step3: Sleep for a specified time

 step4: Go to step 1

The algorithmic complexity is clearly O(n) for this component. The space complexity for this

process is very small even for the sensor nodes, since there is no dynamic creation of any data.

As clearly explained in the section “4.1.1 Data Description of Sensor Nodes for Star Topology” of

this document, there is only a single field that is send to the gateway from any sensor node.

Moreover, the code segment that will be in the memory will be very small since, as pseudo code

reveals, each sensor node has a very limited job and which can be implemented in a small sized

source code file. There is no exception handling on the sensor network components. The sensor

nodes will sense and send the data on all possible conditions, even if they fail to send the data or

they send incorrect data, everything will be handled on the gateway. The sequence diagram for

the star topology based protocol is given on the section 5.2.1.4. “Dynamic behavior of Sensor

Network” of this document.

Interface/Exports: As stated, the network only communicates with the gateway. This

communication is a one way communication, from network to gateway. The interface of each

sensor node is a network packet. This packet is formed as a C structure, named

PacketToGateway, which includes the following information:

 sensorId: Holds the sensor id. Note that each sensor has a unique id which gateway uses as

the primary key in the database.

 sensorCondBatteryLevels: Holds the battery level as an integer between 0 and 100.

 temperature, humidity, lightLevel: Holds the last measured temperature, humidity and light

levels respectively.

7.1.2. LEACH Protocol

Classification: This component can be classified as a subsystem.

Definition:

LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes

randomized rotation of local cluster base stations (cluster-heads) to evenly distribute the energy

load among the sensors in the network. LEACH uses localized coordination to enable scalability

and robustness for dynamic networks, and incorporates data fusion into the routing protocol to

reduce the amount of information that must be transmitted to the base station. The goal of

LEACH is to provide data aggregation for sensor networks while providing energy efficient

communication that does not predictably deplete some nodes more than others. In

LEACH protocol all nodes transmit to cluster heads, and the cluster heads aggregate and

compress the data and forward it to the base station. Each node uses a stochastic

algorithm at each round to determine whether it will become a cluster head in this round.

The most crucial requirement of becoming a CH is to have higher energy level of energy

than other sensor nodes. Moreover, there is no negotiation between nodes or the gateway

for selecting the CHs in the next round. The sensor nodes are randomized in such a way

that most of the time they advertise themselves as CH at the times they have higher levels

of energy relative to its neighbors. Thus, the ultimate aim of the LEACH protocol is to

extend the life span of the whole system by selecting the CHs among more powerful sensor

nodes.

Responsibilities: The main responsibility of this component is to send the data sensed by

the sensor nodes to the gateway.

Constraints: The most important constraint of this component is the energy consumption.

Since energy consumption will inevitably require maintenance, this component must be

power conservative. Moreover, since all the CHs, which are sensor nodes in fact, must be

able to send the data directly to the gateway, we cannot distribute the sensor nodes in a

wide area. For instance, if the greenhouse to be monitored is 2 kilometers length, we

cannot use this protocol.

Composition: The network in a LEACH protocol can be thought as composition of sensor

nodes and CHs. However, it should be noted that a sensor node could be CH or sensor

node overtime. The details of the processing of the sensor nodes and CHS are explained

in the processing part.

Uses/Interactions: The network component is a separate subsystem which is consistent

on its own space. It measures the data, does some processing and sends this processed

data to gateway. Therefore, it only interacts with the gateway subsystem. Since the

component pre-processes the measured data the side effects are removed, resulting the

other components work on stable states.

Resources: Each sensor node is consisted of three parts, radio board, sensor board and

battery. Each sensor node uses its own processor and memory. Since the sensor nodes

are some kind of embedded devices, they have very limited resources. Thus, the code

working on them should be as simple as possible. Radio boards can transmit signals in a

300m radius area (when there are no obstacles such as a wall or tree). Batteries used are

6V lithium-carbon batteries, which we try to maximize the lifetime of it. There are no race

conditions and/or deadlock situations since each sensor node has a single thread working on

them.

Processing:

The sensors measure at regular intervals and send the sensed data to the CHs. The CHs send

the average values of the data that come from the sensor node together with the battery levels of

each of the sensor node, which are calculated from the power of the radio transmission of the

sensor node to the CHs. This compression of the data to be sent to the gateway reduces the

energy consumption of the whole system a lot. The underlying reason is as follows, there are

many sensor nodes and they send their data to the CHs which are very close to them and only

CHs send data over a long distance. Since the energy consumption of a radio button and the

distance that it sends the data are proportional, the total energy consumption will be much less

compared to the other protocols. Another issue related with the energy consumption is that there

is no negotiations over being elected as a CH neither among the sensor nodes nor the gateway.

This also reduces the data to be transmitted, hence the energy consumption a lot. Moreover, after

sensing the environment, each sensor node sleeps until the time it must sense, the time is

determined beforehand and can be configured as intended. For this project, we select that time to

be 5 minutes by default for the LEACH protocol. There is no concurrency for sensor nodes since

they are programmed as a single thread within and infinite loop. It must again be noted that each

sensor node may act as a sensor node or a CH over the time. Here, for the convince of the

reader, we will give the pseudo codes of the two different execution flows separately. Firstly, we

start with the execution flow of the non-CH sensor nodes:

The pseudo code for non-CH sensor node:

 step0: Try to elect itself as a CH for this round, however, the non-CHs are the sensor

nodes which fail to elect itself as CH, thus go to step1.

 step1: Decide which CH to send the data for this round. The decision is based on

the signal level of the CHs which send advertisement to the sensor node.

 step2: Inform the CHs that it is a member of that cluster

 step3: Sense the environment

 step4: Send the data to the CH that is determined at the beginning of this round.

 step5: If it is election time go to step0 else go to step6.

 step6: Sleep for a specified time. Go to step 3.

 The pseudo code for CH sensor node:

 step0: Try to elect itself as a CH for this round, however, the non-CHs are the sensor

nodes which elects itself as CH, thus go to step1.

 step1: Broadcast an advertisement message to the rest of the sensor nodes in a

specified range.

 step2: Based on the number of nodes in the cluster, the CHs create a schedule telling

each sensor node when it can transmit.

 step3: After getting / waiting all the sensor nodes in the cluster, the CH compresses the

data to be sent to the gateway.

 step4: Send the compressed data to the gateway.

 step5: If it is election time go to step0 else go to step3.

The algorithmic complexity is clearly O(n) for this component, for both of the execution flows.

The space complexity for this process is very small even for the sensor nodes, since there is no

dynamic creation of any data. As clearly explained in the section “4.1.2 Data Description of

Sensor Nodes for LEACH” of this document, there is only a single field that is send to the

gateway from any sensor node. Moreover, the code segment that will be in the memory will be

very small since, as both pseudo codes reveal, each sensor node has a very limited job, as a CH

or non-CH, which can be implemented in a small sized source code file. There is no exception

handling on the sensor network components.

The sensor nodes will sense and send the data on all possible conditions, even if they fail to

send the data or they send incorrect data, they will send the data to the CHs. CHs will try to

eliminate all the corrupted data coming from the sensor nodes. Moreover, the data that is sent to

the gateway will be checked once more on the gateway. The sequence diagram for the star

topology based protocol is given on the section “5.2.1.4. Dynamic behavior of Sensor Network”

of this document.

Step0, in both execution flows, states that the sensor nodes try to elect itself as a CH.

Moreover, it is also stated in the document that, this step is done via randomization. This decision

is based on the suggested percentage of cluster heads for the network (determined a priori) and

the number of times the node has been a cluster-head so far. This decision is made by each of

the sensor nodes. There is no negotiation among the sensor nodes or the gateway to select the

CHs for the next round. Each sensor node chooses a random number n between 0 and 1 at the

beginning of each round. If the number is less than a threshold T(n), the node becomes a CH for

the current round. The threshold is set as:

where P is the desired percentage of cluster heads. For example, if we want four of the

hundred sensors to become the CH at each round, we assign P as 0.04. “r” is the current round

counter, and G is the set of nodes that have not been CH in the last 1/P rounds.

Using this threshold, each sensor will become as CH at some points within 1/P rounds. During

round 0, when r = 0, each node has a probability P of becoming a CH in that round. The nodes

that are CH at the 0th round cannot become CH in the next 1/P rounds. Thus, the probability that

the remaining nodes become CH is increased, since there are fewer nodes that are eligible to

become CH. After “1/P -1” rounds, T = 1 for any that have not been a CH, and after 1/P rounds,

all the sensor nodes will become eligible to be CH again.

Now, let‟s move on to the step 2 of the execution flow of the CHs. It states that, based on the

number of nodes in the cluster, the CHs create a schedule telling each sensor node when it can

transmit. In fact, , the CHs creates a TDMA schedule telling each node when it can transmit. This

schedule is broadcasted back to the nodes in the cluster. TDMA allows several sensor nodes to

share the same frequency channel by dividing the signal into different time slots. The sensor

nodes transmit in rapid succession, one after the other, each using its own time slot. This allows

all the sensor nodes and the CH to use the same radio frequency channel, which is required. The

scheduling is very simple, the CH will assign, for instance, at the begging of each second to one

of the sensor nodes that is in its cluster. Then, this information will be send to each of the non-CH

sensor nodes at the beginning of each round. Since, the sensor nodes will be sending data at

most once in a second or once in a 5 seconds and there will be at most 8 or 10 sensor nodes in

each cluster, assigning each of the sensor nodes a starting millisecond of a second obviously

works.

Interface/Exports:

 As stated, only CHs communicate with the gateway. This communication is a one way

communication, from CHs to the gateway. The interface of each sensor node is a network packet.

This packet is formed as a C structure named PacketToGateway which includes the following

information:

 sensorId: Holds the sensor id. Note that each sensor has a unique id which gateway uses as

the primary key in the database.

 sensorCondBatteryLevels[][]: Holds the battery level as an integer between 0 and 100 for

every non-CH head that is attached to the CH.

 averageTemperature, averageHumidity, averageLightLevel: Holds the average of the

measured temperature, humidity and light levels of the non-CH sensor cluster respectively.

7.2. Gateway

Classification: This component can be classified as a subsystem.

Definition: The gateway acts as the network coordinator in charge of node authentication,

message buffering, and bridging from the wireless network to the PostgreSQL database, where

you can collect, process, analyze, and present your measurement data. The PostgreSQL, which

is an object-relational database management system (ORDBMS), is an open-source software. It

supports a large part of the SQL standard and offers many modern features, such as complex

queries, foreign keys, triggers, transactional integrity, multiversion concurrency control, moreover,

can be expanding by the user by adding new data types, functions, operators etc.

Responsibilities: Responsibility of the gateway is receiving the data coming from the

sensor nodes, sending them to the PostgreSQL database.

Constraints: Since the gateway is connected to a computer, there is no constraint about energy

consumption. However there is another constraint about the gateway, the number of

connections that can be made to the gateway is limited and the packets can coincide. On

the other hand, the buffer of the gateway is limited, thus, when the maximum buffer limit is

reached, data transmission is suspended until the buffer has been emptied to avoid buffer

overflow.

Composition: The gateway can be considered as a programmed node connected to the

computer.

Uses/Interactions: The gateway is only interacted with a computer.

Resources: The gateway provides USB connectivity to the IRIS and MICA family of Motes for

communication and in-system programming. USB bus power eliminates the need for an external

power source. The gateway‟ baud rate is 57.6 K.

Processing: The gateway can get the data at any time, when a sensor sends a packet in „star

topology‟ version, when a CH sends a packet in „LEACH protocol‟ version. As clearly explained in

the section “4.1.3 Data Description of Gateway” of this document, the „checked data‟ and the

„greenhouse id‟ are sent to the PostgreSQL database. It checks the data in the „networkData‟

field, if there is no problematic data saves the data to the „checkedData‟ field. If there is a

problematic data, which means the packet is corrupted (i.e. missing bytes in the packet), the

gateway discard that packet.

step1: get the data at any time.

step2: check the data

step3: if there is not any problematic data, save the data to the PostgreSQL database, if

there is a problematic data discard that packet.

step4: go to step1.

The algorithmic complexity is clearly O(n) for this component. The sequence diagram for the star

topology based protocol is given on the section “5.2.2.4. Dynamic behavior of Gateway” of this

document.

Interface/Exports: As stated, the gateway only communicates with the PostgreSQL database.

This communication is a one way communication, from gateway to the PostgreSQL database.

The data is sent to the PostgreSQL database is have two fields, which are:

greenHouseId: Each greenhouse will have a unique id. The id is important since the

data to be written from a greenhouse to the PostgreSQL database must be identified

properly.

checkedData: It is the data that is further checked and to be written to the PostgreSQL

database.

 7.3 Web Application

Classification: This component can be classified as a subsystem.

 Definition: A web application is an application that is accessed over a network such as

the Internet or an intranet. Web applications are popular due to the ubiquity of web

browsers, and the convenience of using a web browser as a client. The ability to update

and maintain web applications without distributing and installing software on potentially

thousands of client computers is a key reason for their popularity, as is the inherent

support for cross-platform compatibility.

Responsibilities: The most important responsibility of the web application is creation of a user

friendly environment. The end user should easily understand the interface. It must be secure,

user information must be unavailable to other people. Database integrity is a must. Changing the

database management server must not cause any problem. Furthermore, changing the database

structure itself, without changing the interface, must not cause any problems.

Constraints: There is really not much constraints about the web application component. The

target market of this project is really small and many modern servers can easily handle user

requests. Also, these requests are not CPU-consuming operations, they are simply database

fetch operations.

Composition: The design of the component is object oriented. There are five classes in this

design:

 WebApplication: This class starts the web application and always works on the

 background.

 NotifyUsers: This class will act as a daemon thread which will check the database in

predefined intervals and notifies users when needed.

 Database: This class is an adapter class which connects to the database, executes the

 command given by user and returns the result.

 User : The user class represents the user. Each user will run on different threads.

 Therefore it only makes sense that User class to extend Thread.

 Greenhouse: The greenhouse class has the functions, showInstantData and

 showPreviousData. Whenever the user requests some data, this message is passed to the

Greenhouse instance in the user class. Then using its functions, that instance

 connects to the database and performs the request.

Uses/Interactions: This component interacts with the gateway subsystem. Interaction takes

place through the database. This component also interacts with the user. This is the only

component which end users can make use of the whole system. User interacts with the web

application via GUI. Side effects of the user interaction do not effect the other parts of the system.

Resources: The web application subsystem needs some resources. Firstly, an external database

is used for storing data. A database management server will also be needed. Also, a web server

is required to host the database and application itself. In the application, there are no race

conditions or deadlock situations. Because, each user can only connect to mutually exclusive

parts of the database. Therefore, different user threads never need to wait for the others.

Processing: The web application has two different processes. The first process happens only a

user enters the system and it is directed by the interaction between the user and the web

application. The second process routinely occurs all the time independent of the user. The details

of these two processes are explained below.

Processing of the user-website interaction:

This process is started by the user via entering the web address in a browser. Upon entering the

web site, web server creates a separate connection thread for the user and user is directed to

main page. The main page is a classic login page which contains a username field and a

password field. Also, there will be a password reminder choice for the users who have forgotten

their password or username. Password reminder functionality needs user to enter his/her e-mail

address. The user is matched with the mail address using the database, then user‟s username

and password is sent to that mail address. Continuing with the main flow, after log in takes place,

user is directed to a page which shows his greenhouse list. This page also includes a link to

settings page, from which user can change his settings.

Alternate Flow 1: User selects one of his greenhouses and directed to the page for that

 greenhouse. This page has three functions. Firstly, latest measurements of that

 greenhouse is loaded from the database and presented to the user. Second

 functionality of this page is that user can request the past measurement data as a list or a

graph by entering the time intervals in the fields. Lastly, user can change the critical

 measurement values for that greenhouse.

Alternate Flow 2: User enters the settings page. In settings page, user can change any of his

information. Also, in settings page, user can change his notification settings. User can choose

to be notified via text message or e-mail or not to be notified at all.

After user is done with his job, user can log out. Note that on every page there shall be a log out

button. When logged out the thread related with that user is terminated. If the user does not log

out properly as expected, the session will be terminated after 1 hour not to cause resource leaks.

Processing of the routine database check:

The other task of the web application is notifying the user when an unexpected situation arises.

This situation happens in two conditions. First, the last temperature or humidity value measured is

too high or too low. Second, the batteries of most of the sensors are run out and sensor network

will not work properly. This routine database check is performed by a daemon thread working all

the time. This thread checks each greenhouse in 5 minute intervals and notifies the owner of that

greenhouse by the notification method the owner has defined previously.

As for the time complexity, since this is a basic web application there is not CPU-time consuming

complex algorithm. The time complexity is irrelevant to the subject. Space complexity also is not a

problem. The action done by users does not too many data to main memory, and the memory is

freed when the page user requested is displayed. Concurrency issues naturally occurs because

of the presence multi-threaded system. Right now, we do not know how much user threads can

be supported by an average web server; However that is an hardware issue which can be solved

only after testing phase. Also another concurrency issue occurs when different users try to fetch

data from the database. This problem is solved by DBMS. The exceptional conditions related with

business logic will be handled as explained throughout the report. Other than that, if the system

stops working properly or some huge resource leaks happens overtime due to the reasons we

cannot think of right now, the web application shall check the state and shall restart the system if

needed.

Interface/Exports:

The web application communicates the other parts of the system through the database. This

database can be thought as a interface between this component and the gateway component.

The database is explained in more detailed in part 4.1.5. The other interface is between the web

application and end user, which is user interface. User interface is shown as a draft in the section

“6.User Interface Design” of this document.

8. Libraries and Tools

8.1 Libraries

8.1.1 Libraries For The Programming Sensor Nodes and Gateway

8.1.1.1 “mote.h”

The “mote.h” header file simply provides declarations of these and other basic functions. The

usual C main function is called automatically when the mote boots.

8.1.1.2 Existing C Libraries

 Furthermore, nesC programs may always call existing C library functions, either from the

standard C library (e.g., mathematical functions like sin) or functions from a personal library of

existing C code. Thus, math.h, vector.h, stdio.h and time.h will be used.

8.1.2 Libraries for Developing Web Application

8.1.2.1 java.sql Package

Provides the API for accessing and processing data stored in a data source using the Java

programming language.

8.1.2.2 java.util Package

 Contains the collections framework, legacy collection classes, event model, date and time

facilities, internationalization, and miscellaneous utility classes (a string tokenizer, a random-

number generator, and a bit array).

8.1.2.3 Java Servlet API

 Servlets are protocol- and platform-independent server side components, written in Java,

which dynamically extend Java enabled servers. They provide a general framework for services

built using the request-response paradigm. Their initial use is to provide secure web-based

access to data which is presented using HTML web pages, interactively viewing or modifying that

data using dynamic web page generation techniques.

8.1.2.4 javax.swing

 It packages a set of GUI components. Swing components draw themselves on the screen

(lightweight). Swing applications will look the same on all platforms.

8.1.2.5 PostgreSQL.jar

It allows Java programs to connect to a PostgerSQL database using standard, database

independent Java code. It is a pure Java implementation. The driver provides are reasonably

complete implementation of the JDBC 3 specification in addition to some PostgerSQL

specific extensions.

8.2 Tools

8.2.1 NesC (Network Embedded Systems C)

 NesC is an extension to the C programming language designed to embody the

structuring concepts and execution model of TinyOS. TinyOS is an event-driven operating system

designed for sensor network nodes that have very limited resources. Since the sensor nodes we

are going to use have very limited resources, we will use nesC to program them. Below there are

some nesC features:

Whole-program analysis: nesC programs are subject to whole program analysis for safety and

optimization for performance. Therefore separate compilation does not take into consideration in

nesC‟s design. The limited program size on motes makes this approach tractable.

nesC is a “static language”: There is no dynamic memory allocation and the call-graph is fully

known at compile-time. These restrictions make whole program analysis and optimization

significantly simpler and more accurate. They sound more onerous than they are in practice.

nesC‟s component model and parametrized interfaces eliminate many needs for dynamic

memory allocation and dynamic dispatch.

nesC supports and reflects TinyOS’s design: nesC is based on the concept of components, and

directly supports TinyOS‟s event based concurrency model. Additionally, nesC explicitly

addresses the issue of concurrent access to shared data. In practice, nesC resolved many

ambiguities in the TinyOS concepts of components and concurrency, and TinyOS evolved to the

nesC versions as it was reimplemented.

8.2.2 NesC Compiler: ncc

It is nesC compiler for TinyOS. It is Implemented as an extension to GCC and called via

TinyOS wrapper ncc. Platform code implements API of macros and functions in C and output

C code or object code.

8.2.3 Java

 Java is high-level, object oriented programming language developed by Sun

Microsystems. Java is a general purpose programming language with a number of features that

make the language well suited for use on the World Wide Web.

8.2.4 Javac

The javac tool reads class and interface definitions, written in the Java programming language, and

compiles them into byte code class files.

8.2.5 Mote-View

 MOTE-VIEW is designed to be an interface (“client layer”) between a user and a

deployed network of wireless sensors. MOTE-VIEW provides users the tools to simplify

deployment and monitoring. It also makes it easy to connect to a database, to analyze, and to

graph sensor readings.

8.2.6 Moteworks

 MoteWorks is the end-to-end enabling platform for the creation of wireless sensor

networks. The optimized processor/radio hardware, industry-leading mesh networking software,

gateway server middleware and client monitoring and management tools support the creation of

reliable, easy-to-use wireless OEM solutions. OEMs are freed from the detailed complexities of

designing wireless hardware and software enabling them to focus on adding unique differentiation

to their applications while bringing innovative solutions to market quickly.

 8.2.7 TOSSIM

 TOSSIM is the TinyOS simulator. TOSSIM compiles directly from TinyOS code, and is

by default automatically compiled .TOSSIM simulates entire TinyOS applications. It works by

replacing components with simulation implementations. It provides several mechanisms for

interacting with the network; packet traffic can be monitored, packets can be statically or

dynamically injected into the network, and TinyOS call invocation can be logged. Moreover,

because TinyOS applications run as native code under TOSSIM, traditional debugging tools

can be used.

 8.2.8 Smart Draw

 Smart Draw is a visual processor used to create flowcharts, organization charts, mind

maps, project charts, and other visuals. It integrates with Microsoft Word, Excel, PowerPoint

and Microsoft Project; it can export diagrams to common image formats and PDF format.

We used SmartDraw for drawing data flow diagrams, UML diagrams and ER diagrams. We

used this also in topic 9 for drawing the Gantt chart for the first term.

 8.2.9 Sequence Diagram Editor

 Sequence Diagram Editor is a Windows tool that helped us quickly and easily create

UML sequence diagrams and call flows. It automatically takes care of tedious layout and

formatting tasks allowing you to create sequence diagrams. We used this tool for the Sequence

diagrams in topic 5.

 8.2.10 Microsoft Project Professional

 Microsoft Project is a project management software program which assisted us in

developing plans, tracking progress and analyzing workloads. We used this in topic 9 for drawing

the Gantt chart for the second term.

9 Time Schedule

9.1 Gannt Chart for Term 1

9.2 Gannt Chart for Term 2

10 Conclusion

Greenhouses prevent the plant from the effects of climate, inspect and so on, which makes great

sense for agricultural production. The automation and high efficiency on greenhouse environment

monitoring and control are crucial. Applying WSN technologies to greenhouses is a revolution for

protected agriculture which overcomes the limits of wire connection systems.

 In this report, the overall WSN system architecture and data architecture is defined. The

design of the subsystems/modules are included. All the necessary diagrams such as ER

diagrams, sequence diagrams and class diagrams are included. This document includes almost

enough information to the developers of this area.

